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This paper explores a possible technique for extending to multidimensional flows some of 
the upwind-differencing methods that have proved highly successful in the one-dimensional 
case. Attention here is concentrated on the two-dimensional case, and the flow domain is sup- 
posed to be divided into polygonal computational elements. Inside each element the flow is 
represented by a local superposition of elementary solutions consisting of plane waves not 
necessarily aligned with the element boundaries. !C 1996 Academrc Press, lnc 

1. INTRODUCTION 

The recent survey of Woodward and Colella [ 163 shows that for one-dimen- 
sional gas dynamics there is an order of magnitude difference in effectiveness 
between sophisticated codes physically based on correct transfer of information, 
and simpler codes combining central differences with artificial viscosity. The 
sophisticated codes need much more computational work to update the solution at 
each mesh point, but this is far outweighed by their ability to capture discon- 
tinuities on a coarser mesh. For two-dimensional problems the difference in 
efficiency is far less marked, and for less violent flows than the ones they consider 
the advantage is likely to be reversed. 

The explanation is probably that the physics of one-dimensional flow is especially 
simple and well understood, and easy to imitate by numerical processes. Two- 
dimensional flows are more complex; in particular, acoustic waves can propagate in 
infinitely many directions rather than just two, and vorticity exists as a new 
phenomenon. Most extensions of upwind codes to two or more dimensions ignore 
these issues and advance the solution by “splitting,” that is to say, through a 
sequence of one-dimensional operators. For examples, see the survey by Woodward 
and Colella, also Sells [ 131 and Chakravarthy and Osher [ 11. There are also what 
may be called “one-and-a-half-dimensional” methods, in which the one-.dimensional 
operators are interwoven, but the underlying physical model is still one involving 
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wave propagation along the coordinate directions. This approach seems to yield 
some modest gains, as shown by Lytton [7] and Colella [2]. However, an obser- 
vation is made in Section 3 which casts doubt on its real value. 

If full advantage can be taken of upwinding techniques in two or more dimen- 
sions it is probably necessary to devise methods which take account of the actual 
directions in which information is propagated. The only results so far available for 
a method of this kind are those of Davis [4]. He assumes that the flow is locally 
dominated by a single shock wave whose unknown orientation may be deduced 
from the velocity field, or, in a later version of the code, from the pressure field 
(Davis, private communication). His method works very well on test problems 
where the flow is divided by shock waves into piecewise uniform regions. This is 
encouraging because it shows that a well chosen model of the flow can be used to 
numerical advantage. 

It has been conjectured that the way forward into two dimensions is blocked by 
the complexity of a “two-dimensional Riemann solver,” by which is meant an 
algorithm for computing the breakdown of initial conditions which are piecewise 
constant in two-dimensional cells. The solution of this problem close to the edge of 
a cell is straightforward, but secondary interactions near the corners are extremely 
difficult to compute. Even if a Riemann solver of this kind were computationally 
feasible, however, it would not be a satisfactory building block for two-dimensional 
calculations. It would, like the operator-splitting methods mentioned above, force 
the principal wave motions to take place normal to the cell boundaries. 

In the present work we avoid this difficulty by thinking of the data as piecewise 
linear rather than piecewise constant, and in Section 2 we interpret one-dimensional 
upwinding schemes in that light. The gradients in the data are used to construct a 
“model flow” consisting of simple waves within each mesh interval. In Section 3 the 
corresponding simple wave solutions, propagating in arbitrary directions, are 
derived for the two-dimensional equations. In Section 4 we propose model flows 
which can be fitted to any data which varies linearly in two dimensions, and in Sec- 
tion 5 we describe a strategy for constructing conservative differencing schemes by 
fitting such models to the data given at vertices of an irregular two-dimensional 
mesh. Section 6 contains observations on the possibility of extending the work to 
three-dimensional flow, and Section 7 comments on the type of advection scheme 
needed to complete the algorithm. 

2. UPWINDING IN ONE DIMENSION 

We begin by observing that one way to derive upwind schemes for the Euler 
equations in one dimension is to suppose that the flow in each mesh interval 
(i, i + 1) is a locally linear superposition of simple waves having the form 

w(x, t) = c (UkTk). (x - A,?). 
k 

(2.1) 
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Here, w is the vector of unknowns, rk is an eigenvector showing how the 
gradients due to the kth wave are distributed over the components of w, elk is the 
amplitude of the kth wave, and L, its speed. Any independent set of unknown 
variables w may be chosen, and the choice will not affect the values of IX~, jlk, but rk 
will be different for each choice. The values of 1,,2,3 are 

and the values of c(,.~,~ are 

U-U, U, Zl+a (2.2) 

$ [h’-wAul, &AP, y$ [AP + MuI (2.3) 

where A(.) = (.)i+, - (.); and any local average values of p, a, u are valid. To achieve 
a conservative algorithm, two conditions are necessary. The eigenvectors rk must 
show the effects of the waves upon the conserved variables (p, pu, pe). In these 
variables r, , r2, r3 are given by 

I 
r,= u-u , r2 = 

h - ua 

1 1 

u 2 r3= u+a , 
$u’ h + ua 

(2.4) 

where h = a’/(y - 1) + $u’ is the specific enthalpy. Also, the average values of p, a, u 
must now be chosen so that 

c uk ;Ik rk = A F/Ax, (2.5) 

where F is the vector of flux quantities. For details, see [9, 121. 
This may be throught of as constructing, within each interval (i, i + 1) a local 

model of the flow. The model consists of elementary solutions of the Euler 
equations, linearized about a particular local average state. The model matches the 
observed data with respect to the spatial derivatives (or to be precise, with respect 
to the mesh differences). The time evolution of the model flow is readily predicted, 
and provides the information which is used to advance the global solution through 
one time step. 

For example, a first-order scheme to update the solution [ 12, 151 involves sub- 
tracting a quantity 

from the value of w at whichever end of the interval the kth wave is moving 
towards, i.e., from w,if 2, is negative in [i, i+ l] or from wi+, if 2, is positive. This 
algorithm causes selected information to be transmitted in directions which are 
determined by the model flow. 
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The present paper is motivated by the wish to create algorithms having similar 
properties with regard to multidimensional wave propagation, but its content is 
limited almost entirely to the devising of appropriate multidimensional models. The 
author hopes to develop the corresponding time-marching algorithms in subsequent 
publications. 

3. ELEMENTARY SOLUTIONS IN Two DIMENSIONS 

In this section, as a necessary preliminary to the construction of two-dimensional 
models, we investigate the elementary solutions from which they may be built. Con- 
sider the Euler equations in primitive variables w, = (p, u, u, p). 

Pr + UP, + VI+ + pa2(u, + uy) = 0, 

(3.1) 

Corresponding to Eq. (2.1) there are solutions to (3.1) of the form 

(3.21 

where 8 is an arbitrary angle, and r(0) is an eigenvector. For acoustic waves and 
primitive variables it can be shown that 

pa2 

r(0) = 
a cos 8 

a sin e 
P 

(3.3) 

and that the wave speed is 

A(O) = 24 cos 0 + v sin 8 + a. (3.4) 

Figure 1 shows that this speed corresponds to a wave front tangential to the 
Mach cone. We repeat here an observation from Roe [lo]. Consider two Cartesian 
points having the same value of y, in a flow given by (3.2)(3.4). An operator-split 
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FIG. 1. An acoustic wave front. 

method will attempt to explain the difference in states as due to waves passing in 
the x direction; it will compute 

P Pa2 pa2 

A ’ cc 
a cos 19 

V asin 0 
=i(l +cos@ ; 

P P P 

+ sin 0 

0 

0 
$4(1-COS0) 

a 

0 

pa2 
-a 

0 ' 

P 
(3.5) 

where the r.h.s. shows the eigenvectors of two one-dimensional acoustic waves, and 
a slip line. These spurious waves may not even travel in the proper direction and 
their inclusion in a numerical method can hardly be realistic. This criticism applies 
even to the “unsplit” algorithms of Colella [2] and Lytton [7]. Our goal in the 
next section is to construct local models of the flow by superposing simple waves 
whose orientation is not assumed in advance. 

Such a model cannot, however, be constructed purely out of acoustic waves since 
these are irrotational and the data may not be. There are two other fundamental 
flows which can be incorporated neatly into the model. One is a shear flow, which 
again has the general form of (3.2) but with 

(3.6) 

A( 8) = 24 cos 0 + v sin 8. (3.7) 

Another is solid-body rotation, or vorticity 

u= -$qJ, 0=&0x. (3.8) 
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There still remains an effect which is missing from the model, for all the flows 
above are isentropic. An entropy wave, across which pressure and velocity do not 
change, reveals itself in the primitive variables as a change of density. The general 
form is again (3.2) with A(d) given by (3.’ 

r= 

independent of 9. 

), but with 

0 
0 

0 

P 

(3.9) 

Another interesting fundamental solution (not directly used below) is obtained 
by superposing acoustic waves of the same strength with all possible propagation 
directions, i.e., by integrating (3.2) with respect to 8 from 0 to 2n with a(0) = ~1~. 
The result yields 

Px = p,. = 0, 

u,=v,=gi,, 

v,=u,=o, 

px=py=o. 

(3.10) 

This solution would appear in the data as a region of uniform (isotropic) velocity 
divergence. However, the same data could be explained equally well by the passage 
of four plane waves 

w(0) + w(7~/2) + w(n) + w(3rr/2), (3.11) 

where w(e) is given by (3.2). For numerical purposes the discrete representation by 
four plane waves is more amenable than the representation by one circular wave, 
and this is how a uniformly diverging flow would be dealt with in the model we 
develop below. However, it may be worth noting that any three equal waves 
separated by angles of 2rr/3 would also produce (locally) the same effect. 

4. THE DISCRETE MODELS 

It is not obvious how the model flows of Section 2 should be generalized from 
one dimension to two. The chief difficulty is that whereas in one dimension there 
are just three types of elementary wave, in two dimensions there are infinitely many 
if we count all the possible orientations as distinct. In one dimension there is only 
one model that can be constructed, and it has three parameters which are the 
unknown wave strengths. Matching the model to the spatial gradients of the three 
data quantities p, U, p gives three simple linear equations whose solution is (2.3). In 
two dimensions the data will allow us to estimate gradients in two directions of four 
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quantities, yielding eight items of information. Whatever model we choose must 
have eight free parameters, some of which may be wave amplitudes, and the 
remainder will be orientation angles. If all the orientations are supposed to be 
known (aligned, e.g., with the grid directions) we will again find easily solved linear 
equations for the amplitudes. However, because of the observation made concern- 
ing Eq. (3.5), we reject this approach, and require that at least some of the orien- 
tations be left unspecified. However, the equations which must be solved for the 
parameters then become nonlinear. If the free parameters are not judiciously 
chosen, no closed form solution may be possible, or the solution may not always be 
real-valued, or the solution may be computationally expensive. In such cases, the 
model will be useless. 

Two models, however, have been found whose parameters are given by simple 
real-valued expressions for all data. Each has, as its representation of the acoustic 
disturbances, a set of four orthogonal waves (Fig. 2). One of the four will have an 
orientation angle in the range [ &rc/4] and we take this as reference. Its orientation 
is 8, and its amplitude a,. The strength of the wave which moves in the opposite 
direction will be CQ, and the waves which travel at right angles to these two have 
strengths a3, ~1~. To this model we add an entropy wave with strength fi and 
inclination 4, so that the model now contains seven unknown parameters. 

To close the model we must introduce a fundamental solution incorporating vor- 
ticity, and it is only in this respect that the two models differ. In Model A we 
introduce a uniform vorticity w, and in Model B we introduce a shear flow such 
that 

u = 24g( 1 + k(u,x - z&J y)), 

u=v,(l +k(u,x-u,y)). 
(4.1) 

This is a special case of (3.6), (3.7) with tan 8 = -(u/u). We will first show the 
algebra for Model A, which is slightly simpler. 

FIG. 2. The waves comprising the discrete models. 
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To tidy up the equations we write dimensionless derivatives 

P, = Pxlpa2, 

U, = u,la, 

V, = v,la, 

R,=P.JP> 

P, = Pylpa2~ 

U, = u,la, 

V, = v,la, 

R,=p.vlp. 

(4.2) 

By equating these to the sum of contributions produced by each component of the 
model. we find 

P, = a, cos 0 + a2 cos 8 - a3 sin 6 - a4 sin e, (4.3a) 

P, = a, sin 6 + ci2 sin 8 + CI~ cos 8 + ~1~ cos 8, (4.3b) 

U, = a, cos* 0 - ct2 cos28 + a3 sin’ f3 - a4 sin2 8, (4.3c) 

U, = al sin 6 cos 8 - a2 sin 8 cos 8 - a3 sin 8 cos 8 

+ a4 sin 8 cos e - &0/a, (4.3d) 

VX=a,sin8cos8-a,sinecose-a,sint?cos8 

+ a4 sin 8 cos 8 + $/a (4.3e) 

V, = a, sin2 8 - a2 sin28 + a3 cos2 9 - a4 cos2 8, (4.3f) 

R,=a,cose+a,cosO-a,sinO-a,sind+pcos#, (4.W 

R, = a1 sin 6 + a2 sin 6’ + CQ cos 8 + CG, cos 8 + /? sin 4. (4.3h) 

In these equations, the convention which distinguishes the contributions of a,, a2 is 
that the same angle 8 is used, but the sign of a is reversed. The eight equations can 
be solved quite easily. From (4.3d) and (4.3e) we obtain at once 

0 = a( V, - U,) 

= (0, - uy ). (4.4) 

Also 

Rx-P,=/lcosq4, 

R, - Py = B sin q5, 

whence /I, 4. Next add (4.3d) and (4.3e) to obtain 

U, + V, = 2 sin 8 cos @(a, - a2 - a3 + ad) 

and subtract (4.3f) from (4.3~) 

U, - V, = (cos28 - sin’ O)(a, - a2 - a3 + ad). 

(4.5) 

(4.6) 

(4.7) 
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Dividing (4.6) by (4.7) yields 

(4.8) 

Since we have defined (81 d 7114 this result defines a unique orientation which is 
always real, coinciding, in fact, with the principal axis of the strain tensor. With 0 
known, the remaining equations are linear. We write (4.3~) and (4.3f) as 

U, = (a, - a2) ~0s’ Q + (a3 - CQ) sin2 0, 

V, = (a1 - cc2) sin2 0 + (a3 -Q) cos2 8, 

and combine them to give 

ctI-q= 
U, ~0s’ 8 - V, sin’ 0 

cos2 8 - sin2 8 ’ (4.9) 

This expression must be rewritten to avoid the possible singularity. Noting that 

Cos2f3=+(l +cos28), sin2 8 = +( 1 - cos 20) 

and that 

where 

we find 

cos 26 = DIR, (4.10) 

R2=N2+D2, (4.11) 

a, -u2=;(LJw+ Vy+ R), 

which is clearly always finite. By the same process we find 

(4.12) 

cc,-cc,=;(U,+ V,.-R). (4.13) 

It can be shown that these expressions (4.12), (4.13) are proportional to the greatest 
and least straining rates experienced by the fluid. In these results, R must have the 
same sign as D, since 101 d 7r/4 and so the r.h.s. of Eq. (4.10) must be positive. For 
locally one-dimensional flow in the x (resp. y) direction, R will equal U, 
(resp. - V,,) and V, (resp. U,) will be zero. Equations (4.12), (4.13) will give the 
correct one-dimensional results. That is, ~1, - ~1~ = U, (resp. 0), and t13 - CC, = 0 
(resp. Vv). It is interesting that 

cr,--cl,+cr,--cr,=u,+ v~v. (4.14) 

The 1.h.s. is the total strength of the acoustic waves (the minus signs appear because 
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of our conventions about c1 and 0) and the r.h.s. is the velocity divergence. Compare 
the result in Eq. (3.10). 

The last step is to combine (4.3a), (4.3b) to give 

a1 + a2 = P, cos 13 + P, sin 8, 

a3 + a4 = P, cos e - P, sin 0, 

and then the a’s follow from (4.12) (4.13). 
A remarkable identity concerning the wave strengths is the following. 

1 

(4.15) 

(4.16) 

=; (P, cos e + P, sin e)2 + f (u, + vY + R)* 

Both ends of this chain are expressions representing some overall strength of the 
disturbance (excluding entropy effects which add another simple term). 

The analysis of Model B is almost identical. The equations are altered by replac- 
ing the vorticity terms with the shear terms from (4.1) thus 

P,=a,cost?+a,cos8-a,sinO--a,sin8, (4.18a) 

P, = a, sin 8 + a2 sin 8 + a3 cos e + a4 cos e, (4.18b) 

U, = a, co2 8 - a2 cos2 8 + a3 sin’ 8 - a4 sin’ 8 + ku,u,, (4.18~) 

U,=a,sin8cos8-a2sin8cos8-a,sin8cos8+a,sinecos8-ku~, (4.18d) 

V, = a, sin 0 cos 8 - a2 sin 8 cos 8 - a3 sin 0 cos 8 + a4 sin 8 cos 8 + kvi, (4.18e) 

V,=a,sin’&a,sin28+a,cosZB-a,cos’e-ku,o,, (4.18f) 

R, = a, cos 8 + a2 cos 8 - a3 sin 0 - a4 sin 8 + 1-3 cos 4, (4.W 
R, = a, sin 8 + a2 sin 0 + a3 cos 8 + a4 cos 8 + fi sin 4. (4.18h) 
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The solution for j,d is identical. Equations (4.18d), (4.18e) give 

The expression for 0 in this case is 

tan 2d = U, + Vx + k(4 - ~2) 

U, - V, - 2ku, o. 

which can be rewritten, using (4.19), and setting o/u = tan 6, as 

tan 29 = 
uy+ V,+(v,-u,)c0s26=_N 
U,- V,,-(V,-U,)sin26 D’ 

(4.19) 

(4.20) 

(4.21) 

Note that for irrotational flow, (4.21) agrees with (4.8). Again we introduce R, such 
that R2 = N2 + D2, and having the same sign as D. In terms of this new R, we still 
have 

CII-~~~=+(U,+ V.,+R), 

cc3 - a4 = ;( Ui, + Vy - R), 

and Eqs. (4.15), (4.16) are unaffected. 

(4.22) 

(4.23) 

For Model B there seems to be no simple analogue of Eq. (4.17). Otherwise, the 
difference between the two models is that Model B involves computing slightly 
more expensive expressions for N and D, but may be able to lit itself to a greater 
variety of flows. Both models have the property that if the data is locally one- 
dimensional in any direction then waves will be predicted which are exactly those 
predicted by a one-dimensional linear Riemann solver aligned in that direction 
(rather than with the coordinate axis). However, Model B can simultaneously 
recognize a shear flow in some other direction. Neither model, however, could 
correctly recognize both shock waves of a colliding pair, unless these happened to 
be perpendicular. It would appear that any model flow must be a compromise 
between simplicity and generality. Simple models will generally be invalid at 
isolated points, and reliance must then be placed on conservation. It is to this 
aspect that the next section is devoted. 

5. CONSERVATION PROPERTIES 

To create an algorithm capable of capturing shock waves, we must ensure that it 
is conservative. For present purposes, the most convenient definition of a conser- 
vative algorithm is that when it operates for one time step, the conserved quantities 
(mass, momentum, and energy) present within the computational domain are only 
changed because of events occurring on the boundaries of the domain. We will first 
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set out a strategy which guarantees this. Then we will relate the results of previous 
sections to that strategy. 

Suppose that the computational domain is tessellated into arbitrary polygons 
(see Fig. 3). Usually these would be quadrilaterals or triangles, and the formulae 
given below will then be very simple. However, we treat the general case to show 
that exceptional meshes create no difficulty, at least with regard to conservation. 
Consider, then, an arbitrary cell with vertices V,, Vz,..., V,, and note that the area 
of the cell may be written 

where ri is the position vector of the ith vertex, and the counting is cyclic and 
anticlockwise. Equation (5.1) is proved by observing that the terms in the sum- 
mation occur in equal pairs, and that every term ri x ri+ 1 is twice the area of a 
triangle Vi0 Vi + , , where 0 is an arbitrary origin. Rearrangement of terms in (5.1) 
leads to two alternative expressions 

2J4=~dY,+,-h,) 15.2) 

= -&4%-xi -1). (5.3) 

Simple alterations of these formulae allow us to estimate the gradients within a 
cell of any quantity q which is defined at the vertices. Thus 

(5.4) 

(5.5) 

FIG. 3. Part of an irregular mesh. 

581,63!2-15 
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and it can be seen that these estimates are exact whenever q is a linear function 
(q=mx+ny). 

Now suppose that the quantities stored at the vertices are the variables defining 
flow of an ideal gas according to the Euler equations, written in conservation form 
as 

w,+FY+GI.=O. (5.6) 

Then an estimate for wI, averaged over the cell, is 

2Aw,= -1 CF,(~‘l+,-y,~,)-Gi(~i+,-~i~1)1. (5.7) 

An alternative way to obtain this formula is to integrate the passage of flux across 
the cell boundary, using the trapezium rule. We have followed this present 
derivation because the formulas (5.4), (5.5) are also useful for estimating the 
gradients from which, in Section 4, the local flow model was deduced. 

The quantity wI, multiplied by a finite time step At reepresents the local 
accumulation of the conserved quantities. The solution can be advanced one time 
step by adding this change to the quantities stored at the vertices. The increments 
may be distributed equally or unequally to the vertices concerned. An equal dis- 
tribution would, if applied on a regular rectangular mesh, reduce to a central- 
differencing scheme of the kind that can be allied with Runge-Kutta schemes [S]. 
An unequal distribution of increments, where the weights are obtained from the 
Jacobian matrices BF/aw and aG/aw, has been used by Ni [S] to obtain an 
integration which is equivalent to LaxxWendroff. The present work is intended for 
use with a scheme in which the increments are distributed with more regard to the 
“upwind’ direction of each wave. By analogy with the algorithm described in Sec- 
tion 2 for one-dimensional flow, we propose to place the changes due to a given 
wave only on those vertices towards which the wave is moving. The selection of 
those vertices, and the weighting factors by which the effect of each wave is dis- 
tributed over them will depend on the orientation of the wave relative to the cell. 
The details of this updating procedure are currently being studied. Meanwhile we 
prove that any distribution will lead to a conservative algorithm. 

The total change of conserved quantities, within the computational domain, is 
obtained by summing (5.7) over all cells. A typical vertex V, in the interior of the 
domain, contributes to this sum through all the cells which meet there. Its total 
contribution is, in fact 

Awj= -F,~Ay+G,~Ax , 
I 

(5.8) 

where the Ax, Ay are the adjacent chords of each cell meeting at V, (see Fig. 3). But 
since the union of these chords is a closed polygon Awi= 0. Since this argument 
applies equally to all interior vertices, the sum of conserved quantities changes only 
due to events on the boundary, and this is what we require. 

Next we demonstrate how the estimated total increment (5.7) may be decom- 



and for an entropy wave at any angle it is 

For a shear wave it is 
0 

-pasin% 
rs = 

paces 6 ’ 

Ipa(vcos%-using) 

P 

PU 
r<, = 

PV . 

&p(d + v2) 
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posed into contributions due to each wave system. It has not been found possible to 
do this by any direct extension of the analysis in Section 4. When the spatial 
changes are large, there seems to be no simple choice of mean values which allows a 
tidy analysis of the flux gradients. Instead, we directly analyze the temporal changes 
inside each cell to produce a decomposition which is conservative but not unique. 
Uniqueness is imposed by incorporating results from Section 4. 

First, observe that the time derivative of w due to the passage of a plane wave is 
the product of the amplitude and wave speed multiplied by an eigenvector which 
describes the effect of that wave on the conserved variables. Such eigenvectors are 
easily derived as projections onto the conserved variables of the eigenvectors shown 
for the primitive variables in Section 3. For an acoustic wave inclined at an angle 8, 
the eigenvector is 

P 

pu+pacos% 
ra = 

pu+pasin% 
ph + pa(u cos 6 + u sin 9) 

(5.9) 

(5.10) 

(5.11) 

However, the shear wave included in Model B has zero speed (i.e., it is a steady 
solution of the Euler equations) so that the term involving rs makes no con- 
tribution to w,. In this respect Model B is somewhat simpler than Model A, 
because the uniform vorticity does contribute to w,, in a way which is derived 
below. Introduce the notation 

A,=cr,lV,=cr,(ucos%+vsin%+a), (512a) 

A,=a,&=cr,(ucos%+vsinO-a), (512b) 

A,=a,l,=ol,(-usin%+vcos0+a), (5.12c) 

A, = a,& = a4( - 24 sin 8 + v cos 0 - a), (5.12d) 

A,=/?&=~(ucos~+usin$). (5.12e) 
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Our strategy is to compute the {A i } within each cell in such a way that the total 
effect of all the disturbances in that cell will produce the correct conservative value 
of w,. First, though, it must be checked that the model does contain all the effects 
contributing to w,. Therefore, we evaluate 

i=4 

;Jl, Airai+ A5rp. (5.13) 

an expression which contains the contributions to w, from the plane waves used in 
the models, but not any contribution from the vorticity contained in Model A. 

As an example, the terms contributing to p, are 

p[A,+A,+A,+A,+A,]=pcc,(ucose+usin8a+a) 

+pcc2(ucos8+usin0-a)+pa,(vcos&usin8+a) 

+ pcc,( u cos 19 - 24 sin 8 - a) + p/?(u cos fj + v sin 4) 

= p(a, + az)(u cos 8 + u sin 19) + p(a, - a*) a 

+ p(a, + a4)(u cos 0 - u sin 13) + p(a, - a4) a 

+ p/3( 24 cos cj + u sin 4). 

Substituting the results of Section 4 into this expression, we obtain 

p[A,+A,+A,+A4+A,]=p[P,cos0+P,sin8](ucos~+usin0) 

+p[P,,cosO-P,sin8](ucos8-usin8) 

++p[U,+ y,+Rl a+&[U,+ v,,-RI a 

+ PC& - p,1+ MR.” - &I 

= pu[ U, + VJ + puR, + ,ouR, 

or, in terms of the dimensional gradients, 

pCA,+A,+A,+A,+A,l=pCu,+v,~]+up.+vp,= --pt. (5.14) 

This calculation, which is valid for Model A or B, checks the algebra and con- 
firms the completeness of the model. Checking the other components of w, is 
tedious, but necessary. It reveals that Model B supplies all the terms of w, from the 
expression (5.13), but that when this expression is used to calculate the effects of the 
acoustic and entropy waves in Model A, there is a shortfall in the expression for 
(pu), amounting to &w, and a surplus in the expression for (pu), of $uo. These 
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terms represent the effects of convected vorticity. The expression for (pe), turns out 
to be correct. Therefore, we write 

-PI=P(A1+A2+A3+Aq+A5), (515a) 

-(pu),=pA,(u+a cos e)+pA,(u-u cos 0) +pA,(y-a sin 0) 

+ pA,(u + a sin 0) + pA,u - $puo, (515b) 

-(pv),=pA,(v+asin8)+pA,(v-asin~)+pA,(o+acos~) 

+pA,(u-ucose)+pA,u+~puo, (5.15c) 

-(pe),=pA,(h+uucos8+uusin8)+pA,(h-uaucos8-uusine) 

+ pA,(h - ~24 sin 8 + uu cos e) -t pA,(h + ~24 sin 8 - uu cos e) 
+ $&(u2 + u’). (5.15d) 

where w = 0 for Model B. 
These equations are the two-dimensional analogue of Eqs. (2.5). In each case we 

try to ensure that the changes of conserved variables predicted by the model are 
correct. Here, we assume that the LHS of each equation is obtained from the con- 
servative formula (5.7) for each cell. Then we treat (5.15) as a set of conditions to 
be identically (not just approximately) satisfied by the {Ai} and by 8,& w. Since 
there are only four conditions for eight unknowns, the remaining information must 
be supplied from elsewhere. It seems natural to take the values of 8,& w from Sec- 
tion 4. Conditions (5.15) are then an incomplete set of linear equations for the 
(Ai}, which may be partially analyzed as follows. We obtain at once 

-(p), + up, + p0 = pa cos e(A, -A2) -pa sin e(A, - A4), (5.16a) 

- (pu), + UP, - ~240 = pa sin e(A, - A2) + pa cos e(A, - A4), (5.16b) 

and hence (A, -A2), (AX--Ad). Substituting these results into (5.15d) yields 

s A, = (h - u2 -u’) pr + +x.4), + u(p), - (pe),. (5.17) 

If the changes are so small that (.), may be treated as a derivative, rather than as 
a numerical estimate of a derivative, these equations simplify considerably, offering 
more insight into the models. 

(A2-A,)=u,c0S8+u,Sin8-t(uc0SB-uSin8)o, 

(A, - A,) = U, cos 8 - U, sin 8 + i(2.4 cos e + 0 sin e) 0, 

A5 = (U2P, -Prm*? 

A,+A*+A,+A,=p,. 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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Nonconservative schemes could use these simpler conditions; a fully conservative 
scheme would have to satisfy (5.15). 

One more condition is needed on the (A, }. In view of the symmetry of the results 
so far, we would like an expression for A, + A, - A, - A, (which need not derive 
from the conservation form). By changing some signs in the analysis leading to 
(5.14) we find 

A,+A,-A,-A,=P,(ucos2%+vsin2%) 

+ P,.(u sin 2% - v cos 2%) + aR. (5.22) 

It may be shown that the r.h.s. does not, in general, vanish when the data are 
taken from a steady flow. One might suppose that it should, since then the { Ai ) 
would all be zero, and either the strength or the speed of every wave would be zero. 
Instead of this, the models represent steady flow by a state of equilibrium between 
finite waves, such that A, = A,= -A, = -A,, and A,=O. 

We have now generated a conservative model of the flow, in which the effects of 
the various components are given by (5.15). The parameters of this decomposition 
((Ai}, 8, 4, w) are found from (4.4), (4.5), (4.8), or (4.21), (5.16) (5.17), and (5.22). 
Any consistent choice of local average values for p, U, v, a, h in these equations will 
be valid, and will not affect the conservation property. It may be asked, though, 
whether there are particular average values, similar to those which appear in the 
one-dimensional theory [9, 121, bestowing special “shock-recognition” properties. 
However, this question raises unsolved problems about the sort of “captured shock 
structure” that is possible in two-dimensional flow, and will not be discussed here. 

6. EXTENSION TO THREE DIMENSIONS 

No detailed formulae have been worked out for the three-dimensional case. 
However, merely counting the degrees of freedom makes it plausible that analogous 
models could be constructed. Data for the three-dimensional unsteady Euler 
equations would consist of five variables, so there would be fifteen gradients to be 
accounted for by the model. If the acoustic disturbances are again to be represented 
by a set of orthogonal plane waves (like an expanding cube) there will be six wave 
amplitudes and three angles involved (two angles to orient one wave, one angle to 
orient its neighbors). An entropy wave with one amplitude and two angles will 
bring the number of parameters up to twelve. The remaining three are available to 
represent rotational effects. The analogue of Model A would contain three indepen- 
dent vorticity components. The anaiogue of Model B could contain a shear flow 

q = qoc1 + k,(w- %Y) + k,(%.Y - w) + k,(%Z - wox)l (6.1) 

which is, like (5.1), a steady solution to the Euler equations. However, the three 
shear components which it contains are not all independent, since all take place in a 
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parallel flow, and one of the ki can be dropped with no loss of generality. To com- 
plete the set of fifteen parameters one might add the flow 

u = ug = o( wg y - u,z), 

u = ug + o( U$ - wax), (6.2) 

w = wg + w( ugx - u() y). 

This is also a steady solution of the Euler equations and represents a swirling 
flow in which the vorticity is parallel to the streamline (u,, uO, wO). Again there is a 
computational advantage to Model B in that some of its components are steady 
flows whose contribution to the time-marching process are identically zero. In fact, 
an analogue of Model B can be worked out for any number of space dimensions d, 
and the description of arbitrary data is reduced to the description of (2d + 1) non- 
linear scalar advection problems. 

There are, however, geometrical difficulties which appear in three dimensions, if 
the partition of space is made into volumes whose facets have more than three 
sides. Most finite-volume schemes employ computational cells which are 
hexahedral, with quadrilateral faces specified by four vertices not normally lying in 
one plane. The boundary surfaces of the cells must be unambiguously defined so 
that the cells fill the computational space without overlaps or voids. This can be 
done by folding each surface into two triangles [6], or by choosing a particular 
doubly ;uled surface to cover each face [3]. Once this has been done, any con- 
sistent formula for the volume can also be used to estimate the flux divergence, as 
in (5.7), but the consistent formulae are disconcertingly lengthy [6,3]. The effect of 
simpler formulae on the computational accuracy awaits investigation. 

7. ADVECTION SCHEMES 

The eventual goal of this work is to create an algorithm for multidimensional gas 
dynamics which will enjoy the same degree of success already obtained by upwind 
schemes in one dimension. In this paper we have addressed (at most) half the 
problem, showing how arbitrary disturbances in the data can be replaced by locally 
equivalent sets of plane waves and/or vorticity. To march forward in time, we need 
to apply to each wave some numerical advection scheme. We may hope that such 
schemes can be based on schemes for scalar problems, as has happened in the one- 
dimensional case. Also, we may anticipate that such schemes will show many of the 
typical features of successful one-dimensional schemes, such as asymmetric support 
and non-linear limiters [15]. However, the theory even of scalar advection 
algorithms in many dimensions is only in its infancy. Roe and Baines [11] present 
a criterion designed to avoid overshoots and describe a scheme which meets it. 
Smolarkiewicz [14] describes another distinctive, but related, approach. The next 
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(rather large) step in the investigation reported here will be to experiment with 
these and other algorithms in the present context. 

8. CONCLUSIONS 

We have pointed out that the extension of upwind differencing schemes to more 
than one space dimension cannot be accomplished by operator splitting methods 
without losing the desirable property of recognizing data due to a simple wave. To 
construct “genuinely two-dimensional” schemes we propose model flows, composed 
of elementary solutions to the two-dimensional equations. These model flows are 
such that they can be matched to arbitrary data which varies linearly in some small 
region. The acoustic part of the flow is modelled by four orthogonal plane waves 
whose orientation is matched to the gradients in the data. Variation of entropy is 
represented by a single plane wave, and rotational effects either by uniform vorticity 
or by a parallel shearing motion. We show that the parameters of the model can be 
evaluated in such a way that a time-marching algorithm can be made exactly con- 
servative. 
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